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Abstract
The coronavirus disease 2019 (COVID-19) is a master killer which appeared suddenly and which has already claimed 
more than 200,000 human lives. In this situation, laboratories are in urgent need for a COVID-19 murine model to 
search for effective antiviral compounds. Here we propose a novel strategy for the development of mice that can be 
inoculated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 causative agent. In 
humans, two proteins – ACE2 and TMPRSS2 – are involved in SARS-CoV-2 cells entry and, thus, we decided to intro-
duce their genes into a murine genome. These genes will be placed with LoxP sites under the murine Tmprss2 promoter. 
Such an approach can provide a representative model with the opportunity to control the viral sensitivity of an animal 
population and tissue specificity of hACE2 and hTMPRSS2 expression.
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The new COVID-19 model should be based on inducible co-expression of the human ACE2 and TMPRSS2 genes. Acti-
vation of ACE2 and TMPRSS2 genes will occur only in the virological laboratory, after crossbreeding with Cre-mice. 
Before activation, mice will be resistant to SARS-CoV-2 for their biological safety during the pandemic.
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Background

The COVID-19 outbreak is a dramatic, rapidly evol-
ving situation. The search for effective approaches to 
SARS-CoV-2 infection therapy and prevention has be-
come one of the most important tasks for medicine now 
and in the foreseeable future. Every day, doctors and 
scientists receive more and more information about the 
effectiveness of classic antiviral medications and some 
off-label-used drugs.

However, these data should also be quickly supple-
mented by the results of pre-clinical studies that can 
provide much useful and even crucial information about 
the most effective drugs. Unfortunately, as most labora-
tories do not have an accessible SARS-CoV-2-sensitive 
animal model, this is the main stumbling block for quick 
in vivo screening. The difficulty in obtaining such mod-
els in the pandemic condition directed us to develop our 
own SARS-CoV-2-sensitive mouse model as discussed 
in this paper.

Virus invasion pathway

To enter the target cells, SARS-CoV and SARS-CoV-2 
use their “corona”, which is represented by numerous spi-
ke (S) proteins. It was shown that the S-protein engages 
angiotensin-converting enzyme 2 (ACE2) as the entry re-
ceptor (Li et al. 2003). During viral infection, the trimeric 
S protein is cleaved into S1 and S2 subunits (Belouzard 
et al. 2009; Simmons et al. 2013). Further, the S1 subunit, 
containing the receptor binding domain, directly binds to 
the peptidase domain of angiotensin-converting enzyme 
2 (ACE2) (Li et al. 2005), whereas S2 is responsible for 
membrane fusion.

Although ACE2 is present in many types of tissues 
(Hamming et al. 2004), SARS-CoV is highly pathogenic 
only in the lungs (To and Lo 2004). Furthermore, type 
1 pneumocytes, which poorly express ACE2, are more 
sensitive to viral invasion in comparison with ACE2-
rich type 2 pneumocytes (Matsuyama et al. 2010). The 
selective nature of tissue damage was explained by the 
existence of a second molecule, which also contributes 
to cell contagion. Thus, ACE2 immunoprecipitation 
captured the transmembrane protease/serine subfamily 
member 2 (TMPRSS2), a known human airway and al-
veolar protease (Vaarala et al. 2001). This enzyme was 

shown as one of the up-regulators of coronavirus infec-
tion pathways (Iwata-Yoshikawa et al. 2019). Interac-
tion of ACE2 and TMPRSS2 enhanced the cell entry of 
SARS-CoV and it correlated with TMPRSS2-mediated 
proteolysis of both S and ACE2 proteins (Shulla et al. 
2011). Recently, Hoffmann et al. (2020) have discovered 
that serine protease TMPRSS2 is employed by SARS-
CoV-2 for S protein priming and the TMPRSS2 inhibitor 
prevents virus entry.

Homology between human and 
mouse ACE2 proteins

Human and mouse ACE2 enzymes consist of 805 amino 
acids with 81.86% interspecies homology. Both hACE 
and mACE have Collectrin (75.97%) and Peptidase M2 
(interdomain similarity = 84.62%) domains and the latter 
directly interacts with S-protein. It has only recently been 
identified that amino acids Asp30, His34, Tyr41, Gln42, 
Lys353, Arg357, Gln24 and Met82 of human ACE2 play 
a key role in binding with viral S-protein (Yan et al. 2020). 
Alignment of mouse and human protein ACE2 sequences 
showed that five of these eight residues differ in human 
and mice. The similarity between TMPRSS2 cleavage 
sites (amino acids 697–716) of hACE2 and mACE2 pro-
teins is 78.95% (Fig. 1).

Three regions of SARS-CoV-2 binding site are shown. 
Five of eight key residues differ between mouse and hu-
man aligned sequences (highlighted in red) when three 
amino acids coincide (highlighted in green). In addition, 
alignment of mouse and human ACE2 TMPRSS2 cleav-
age sites is presented below.

Homology between human and 
mouse TMPRSS2 proteins

Both human and mouse TMPRSS2 proteins consist of 4 
domains: Transmembrane; LDL receptor class A; Sca-
venger receptor cysteine‐rich; and Serine protease. Muri-
ne TMPRSS2 protein contains 492 amino acids and sha-
res 81.4% similarity and 77.3% identity with the human 
one. The details of comparison were presented in Vaarala 
et al. (2001).



Research Results in Pharmacology 6(2): 1–7 3

Figure 1. Alignment of human and mouse ACE2 protein sequences.

Mouse models of SARS-CoV 
infection

Naturally, mice are low-sensitive to SARS-CoV infecti-
on, but can be poorly inoculated by the virus. To improve 
the virus inoculation, a few transgenic lines of mice were 
created with humanized ACE2 gene. In the first line, the 
hACE2 gene was introduced under the CAG promoter 
with CMV-IE enhancer (Tseng et al. 2007). This modifi-
cation led to a sharp clinical manifestation with an acute 
wasting syndrome and deaths of the mice within 4 to 8 
days after SARS-CoV inoculation. A second line was de-
veloped by introducing the hACE2 gene regulated by the 
human cytokeratin 18 (K18) promoter. After the SARS-
CoV contagion, these mice demonstrated a clinical picture 
of encephalitis and pneumonia, resulting in death after 3–5 
days of the post-inoculation period (McCray et al. 2007).

The transgenic line, created by the Yang et al. (2007), 
has the most natural tissue expression profile of ACE be-
cause hACE gene was introduced under the mouse’s own 
Ace2-promotor. In this line, SARS-CoV replicated more 
efficiently in the lungs of transgenic mice than in those 
of wild-type mice. After the SARS-CoV inoculation, the 
mice had severe pulmonary lesions, including interstitial 
hyperaemia and haemorrhage, monocytic and lymphocyt-
ic infiltration, protein exudation and alveolar epithelial 
cell proliferation and desquamation.

As SARS-CoV and SARS-CoV-2 have a similar man-
ner of cell contagion, it is believed that the already-cre-
ated models are also sensitive to COVID-19. Bao et al. 
(2020) have recently reported that ACE2-humanized 

mice with ACE2 gene under murine Ace2 promoter have 
sensitivity to SARS-CoV-2, but it is lower than that of 
SARS-CoV. However, these models are not widespread in 
laboratories and we have not found any publication where 
ACE2-humanised mice were used for preclinical studies 
of anti-SARS-CoV-2-therapy. Whereas, since a few mod-
els have already been developed, we can take the availa-
ble experience and try to propose our own strategy for the 
genetic edition.

Novel approach to the creation of 
SARS-CoV-2-sensitive mice

As can be seen, there is not only ACE2 involved in 
SARS-CoV-2 invasion. Therefore, first of all, we consi-
der that mice with two humanized ACE2 and TMPRSS2 
genes will be more sensitive to viral invasion. This ap-
proach will not only make ACE2 more accessible for cle-
avage (which is important for a viral entry), but will also 
open up additional possibilities for drugs testing, such as 
inhibitors of TMPRSS2. Moreover, a high expression of 
TMPRSS2 in the epithelial cells makes it reasonable to 
introduce both hACE2 and hTMPRSS2 under the murine 
Tmprss2 promoter. We believe that the co-expression of 
two virus-inviting molecules in the lung epithelium will 
imitate the events that happen in the human body during 
SARS-CoV-2 invasion.

In brief, to create this model, we are going to clone 
hTMPRSS2 and hACE sequences and introduce it into 
the mouse genome with the use of CRISPR/Cas9 tech-
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Figure 2. Construction for the development of Cre-regulated hACE2/hTMPRSS2 mice.

Table 1. Brief description of the existing SARS-CoV-sensitive transgenic mice.

Promoter Clinical pattern and pathomorphology Lethality level References
SARS-CoV SARS-CoV-2 SARS-CoV SARS-CoV-2

CAG 
promoter+CMV-
IE enhancer

Acute wasting syndrome. Death within 
4 to 8 days of post-inoculation period as 
result of inflammatory response in the 

brain (more intensive than in the lungs)  
Damaged tissues: lungs, kidneys, 

liver, heart, skeletal muscle, 
spleen, lymphatic nodes, pancreas, 
gastrointestinal smooth muscle and 

ganglia, vascular endothelium, adrenal 
and central nervous system (CNS)

no data 100% (in mice 
with high hACE2 
expression) 0% 

(in mice with low 
hACE2 expression)

no data Tseng et al. 
2007; Yoshikawa 

et al. 2009

human 
cytokeratin 18+ 
alfalfa mosaic 
virus enhancer

Pneumonia, neuro-inflammation. 
Infection of the CNS is a major factor 

contributing to the fatal outcome 
observed in SARS-CoV-infected mice. 
Damaged tissues: Lungs, colon, small 
intestine, kidneys, liver, spleen, heart

no data 100% no data McCray et al. 
2007; Netland et 

al. 2008

mouse ACE2 
promoter

Gross pulmonary edema, focal 
haemorrhage, consolidation and 
lung bullae with no significant 

histopathological lesions or viral 
antigens in myocardium, liver, spleen, 
kidney, cerebrum, intestine and testis. 
Damaged tissues: Viral antigens were 
observed in the bronchial epithelial 

cells, alveolar macrophages and 
alveolar epithelia.

Interstitial pneumonia 
with lymphocytes and 
monocytes infiltration. 

Accumulation of 
macrophages in alveolar 

cavities

0% 0% Yang et al. 2007; 
Bao et al. 2020

nology. hTMPRSS2 and hACE2 will be divided by the 
IRES element for their equivalent expression. Addition-
ally, to create an inducible hACE2/hTMPRSS2 expres-
sion, we wish to place LoxP sites in front of the hTM-
PRSS2 sequence (Fig. 2 for the details). In this manner, 
it will allow provoking SARS-CoV-2 sensitivity only 
after breeding with suitable Cre-mice within virological 
laboratories. For example, Cre-ERT2 mice express ta-
moxifen-induced Cre-recombinase in stem cells. Thus, 
it can cut the stop-cassette between LoxP sites during 

ontogenesis, unlocking the gates to hACE and hTM-
PRSS2 transcription.

Construction consists of homology arms, hTMPRSS2 
sequence, IRES element, hACE2 sequence and an effec-
tive terminator of expression in 3’ regions. Homology 
arms have to direct it next to the murine Tmprss2 pro-
moter with use of CRISPR/Cas9. Transgenic mice can 
be crossbred with Cre-ERT2 mice for the excision of 
the stop-cassette between LoxP-sites and activation of 
hACE2 and hTMPRSS2 transcription.
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Discussion

A previously-unknown coronavirus called SARS-CoV-2 
has crossed the species barrier and caused a human infecti-
on outbreak, first in Wuhan and then around the world. The 
rapidly developing epidemic generated interest in mice ex-
pressing the human receptors for SARS-CoV-2 entry for 
further pharmacological screening (Walls et al. 2020).

In the growing avalanche of SARS-CoV-2 pathogene-
sis details, it is very difficult to focus on specific targets. 
For example, recent insight into the CD147 as a novel 
target of SARS-CoV-2 opens up new possibilities for 
explaining the disease (Wang et al. 2020). Nevertheless, 
here we describe our strategy for the development of the 
novel COVID-19 murine model by humanising ACE2 
and TMPRSS2 genes.

We have formulated the basic requirements for the 
COVID-19 animal model. First of all, transgenic animals 
should not be a “laboratory” reservoir of the virus before 
the start of the pharmacological experiments. Although 
the SARS and MERS were successfully inoculated in 
mice, infection did not spread in animals after intranasal 
administration. In the case of a new SARS-CoV-2 virus, it 
is impossible to predict its degree of contagion from mice 
to mice and human population. For the safety of the lab-
oratory staff, we decided to use LoxP-induced expression 
of humanized genes, as described in (Zvartsev et al. 2018; 
Deykin et al. 2019; Silaeva et al. 2020).

As shown, the hTMPRSS2 and hACE2 proteins are 
jointly involved in the pathogenesis of the SARS-CoV-2 
invasion. Moreover, the expression profiles of these en-
zymes in mice and human intersect at lungs, intestine 
and the male reproductive system epithelium (Vaarala et 
al. 2001; Sungnak et al. 2020). Therefore, we consider it 
appropriate to use the mouse Tmprss2 promoter for the 
expression of human hTMPRSS2 and hACE2 genes in 
the transgenic line. A modern approach to modification 
of the mouse genome in this way would be gene editing, 
based on CRISPR/Cas9. On making a gap after the mTm-
prss2 promoter, a matrix containing homology arms, hT-

MPRSS2 sequence, IRES element, hACE2 sequence and 
an effective terminator of expression in 3’ regions will be 
used to bridge the gap.

It is very important not only for the COVID-19 mu-
rine model to be able to be infected by the SARS-CoV-2, 
but also for the infection process to be as human-like as 
possible. The previous models showed effective infection 
only in high viral load conditions. At the same time, in the 
models based on the K18 promoter, systemic damage, neu-
roinflammation and lethargy developed, which is not quite 
representative of the human clinical picture. In the model, 
created by Yung et al. (2007), the SARS-CoV-2 infection 
led to more human-like clinical disorders, but those mice 
had quite a low level of lethality. The advantages and dis-
advantages of the existing ACE2 humanized mice were 
presented in Gretebeck and Subbarao (2015). We think that 
reproduction of hTMPRSS2 and hACE2 crosstalk in mu-
rine epithelium will be much better because it can intensify 
lung contagion with no influence on brain damage.

Activation of expression is possible after crossbreeding 
with mice constitutively or inducibly expressing Cre-re-
combinase (for example, Cre-ERT2 line). We expect these 
mice to be a safe and representative COVID-19 model.

Acknowledgements

This work was performed using the equipment of the In-
stitute of Gene Biology of Russian Academy of Sciences 
facilities and supported by the Ministry of Science and 
Higher Education of the Russian Federation. This work 
was supported by the Russian Science Foundation (Grant 
#17-75-20249). We are grateful to Academician Pavel 
Georgiev and Professor Mikhail Pokrovskiy for produc-
tive discussions, Vladislav Maslov for design of the figu-
res and Olesya Serkina for the grammar review.

Conflict of interest

The authors declare no conflict of interest.

References
 � Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, 

Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, 
Wang S, Song Z, Zhao L, Liu P, Zhao L, Ye F, Wang H, Zhou W, Zhu 
N, Zhen W, Yu H, Zhang X, Guo L, Chen L, Wang C, Wang Y, Wang 
X, Xiao Y, Sun Q, Liu H, Zhu F, Ma C, Yan L, Yang M, Han J, Xu 
W, Tan W, Peng X, Jin Q, Wu G, Qin C (2020) The Pathogenicity 
of SARS-CoV-2 in hACE2 Transgenic Mice. BioRxiv 02.07.939389 
(preprint). https://doi.org/10.1101/2020.02.07.939389

 � Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS 
coronavirus spike protein via sequential proteolytic cleavage at two 
distinct sites. Proceedings of the National Academy of Sciences 
of the United States of America 106(14): 5871–5876. https://doi.
org/10.1073/pnas.0809524106 [PubMed] [PMC]

 � Deykin A, Tikhonov M, Kalmykov V, et al. (2019) Transcription 
termination sequences support the expression of transgene prod-
uct secreted with milk. Transgenic Res 28, 401–410. https://doi.
org/10.1007/s11248-019-00122-9 [PubMed]

 � Gretebeck LM, Subbarao K (2015) Animal models for SARS and 
MERS coronaviruses. Current Opinion in Virology 13: 123–129.  
https://doi.org/10.1016/j.coviro.2015.06.009 [PubMed] [PMC]

 � Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor 
H (2004) Tissue distribution of ACE2 protein, the functional re-
ceptor for SARS coronavirus. A first step in understanding SARS 
pathogenesis. The Journal of Pathology 203(2): 631–637. https://doi.
org/10.1002/path.1570 [PubMed] [PMC]

https://doi.org/10.1101/2020.02.07.939389
https://doi.org/10.1073/pnas.0809524106
https://doi.org/10.1073/pnas.0809524106
https://www.ncbi.nlm.nih.gov/pubmed/19321428
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660061/
https://doi.org/10.1007/s11248-019-00122-9
https://doi.org/10.1007/s11248-019-00122-9
https://pubmed.ncbi.nlm.nih.gov/30919251/
https://doi.org/10.1016/j.coviro.2015.06.009
https://www.ncbi.nlm.nih.gov/pubmed/26184451
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550498/
https://doi.org/10.1002/path.1570
https://doi.org/10.1002/path.1570
https://www.ncbi.nlm.nih.gov/pubmed/15141377
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167720/


Soldatov VO et al.: On the way from SARS-CoV-sensitive mice to murine COVID-19 model6

 � Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, 
Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller 
MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry de-
pends on ACE2 and TMPRSS2 and is blocked by a clinically proven 
protease nhibitor. Cell 181(2): 271–280. https://doi.org/10.1016/j.
cell.2020.02.052 [PubMed] [PMC]

 � Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda 
M, Nagata N (2019) TMPRSS2 contributes to virus spread and im-
munopathology in the airways of murine models after coronavirus 
infection. Journal of Virology 93(6): e01815–01818. https://doi.
org/10.1128/JVI.01815-18 [PubMed] [PMC]

 � Li F, Li W, Farzan M, Harrison SC (2005) Structure of SARS 
coronavirus spike receptor-binding domain complexed with recep-
tor. Science 309(5742): 1864–1868. https://doi.org/10.1126/sci-
ence.1116480 [PubMed]

 � Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasun-
daran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan 
M (2003) Angiotensin-converting enzyme 2 is a functional receptor 
for the SARS coronavirus. Nature 426(6965): 450–454. https://doi.
org/10.1038/nature02145 [PubMed] [PMC]

 � Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Tagu-
chi F (2010) Efficient activation of the severe acute respiratory syn-
drome coronavirus spike protein by the transmembrane protease 
TMPRSS2. Journal of Virology 84(24): 12658–12664. https://doi.
org/10.1128/JVI.01542-10 [PubMed] [PMC]

 � McCray Jr PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, 
Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, 
Kirby P, Look DC, Perlman S (2007) Lethal infection of k18-hace2 
mice infected with severe acute respiratory syndrome coronavi-
rus. Journal of Virology 81(2): 813–821. https://doi.org/10.1128/
JVI.02012-06 [PubMed] [PMC]

 � Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) 
Severe acute respiratory syndrome coronavirus infection causes 
neuronal death in the absence of encephalitis in mice transgenic for 
human ACE2. Journal of Virology 8(15): 7264–7275. https://doi.
org/10.1128/JVI.00737-08 [PubMed] [PMC]

 � Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gal-
lagher T (2011) A transmembrane serine protease is linked to the 
severe acute respiratory syndrome coronavirus receptor and acti-
vates virus entry. Journal of Virology 85(2): 873–882. https://doi.
org/10.1128/JVI.02062-10 [PubMed] [PMC]

 � Silaeva YY, Kalmykov VA, Varlamova EA, Korshunov EN, Kor-
shunova DS, Kubekina MV, Shtil AA, Roninson IB, Deykin AV 
(2020) Genome editing as an approach to the study of in vivo tran-
scription reprogramming. Doklady Biochemistry and Biophysics 
490: 43–46. https://doi.org/10.1134/S1607672920010147

 � Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (2013) Pro-
teolytic activation of the SARS-coronavirus spike protein: Cutting 
enzymes at the cutting edge of antiviral research. Antiviral Research 
100(3): 605–614. https://doi.org/10.1016/j.antiviral.2013.09.028 
[PubMed] [PMC]

 � Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova 
M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, Worlock 
KB, Yoshida M, Barnes JL, HCA Lung Biological Network (2020) 
SARS-CoV-2 entry factors are highly expressed in nasal epithelial 
cells together with innate immune genes. Nature Medicine. https://
doi.org/10.1038/s41591-020-0868-6

 � To KF, Lo AW (2004) Exploring the pathogenesis of severe acute 
respiratory syndrome (SARS): the tissue distribution of the corona-
virus (SARS-CoV) and its putative receptor, angiotensin-convert-
ing enzyme 2 (ACE2). The Journal of Pathology 203(2): 740–743. 
https://doi.org/10.1002/path.1597 [PubMed] [PMC]

 � Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, 
Makino S, Packard MM, Zaki SR, Chan TS, Peters CJ (2007) Se-
vere Acute Respiratory Syndrome Coronavirus infection of mice 
transgenic for the human angiotensin-converting enzyme 2 virus re-
ceptor. Journal of Virology 81: 1162–1173. https://doi.org/10.1128/
JVI.01702-06 [PubMed] [PMC]

 � Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihko PT 
(2001) Expression of transmembrane serine protease TMPRSS2 in 
mouse and human tissues. The Journal of Pathology 193(1): 134–140. 
https://doi.org/10.1002/1096-9896(2000)9999:9999%3C::AID-
PATH743%3E3.0.CO;2-T [PubMed]

 � Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D 
(2020) Structure, function, and antigenicity of the SARS-CoV-2 
spike glycoprotein. Cell 181(2): 281–292. https://doi.org/10.1016/j.
cell.2020.02.058 [PubMed] [PMC]

 � Wang K, Chen W, Zhou YS, Lian JQ, Zhang Z, Du P, Gong L, 
Zhang Y, Cui HY, Geng JJ, Wang B, Sun XX, Wang CF, Yang X, 
Lin P, Deng YQ, Wei D, Yang XM, Zhu YM, Zhang K, Zheng ZH, 
Miao JL, Guo T, Shi Y, Zhang J, Fu L, Wang QY, Bian H, Zhu P, 
Chen ZN (2020) SARS-CoV-2 invades host cells via a novel route: 
CD147-spike protein. BioRxiv 03.14.988345 (preprint). https://doi.
org/10.1101/2020.03.14.988345

 � Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural ba-
sis for the recognition of SARS-CoV-2 by full-length human ACE2. 
Science 367(6485): 1444–1448. https://doi.org/10.1126/science.
abb2762 [PubMed]

 � Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, Gao H, 
Huang L, Liu YL, Ma CM, Xu YF, Ding MX, Deng HK, Qin C 
(2007) Mice transgenic for human angiotensin-converting enzyme 2 
provide a model for SARS coronavirus infection. Comparative Med-
icine 57(5): 450–459. [PubMed]

 � Zvartsev RV, Korshunova DS, Gorshkova EA, Nosenko MA, 
Korneev KV, Maksimenko OG, Korobko IV, Kuprash DV, Druts-
kaya MS, Nedospasov SA, Deikin AV (2018) Neonatal lethali-
ty and inflammatory phenotype of the new transgenic mice with 
overexpression of human interleukin-6 in myeloid cells. Doklady. 
Biochemistry and Biophysics 2018 483(1): 344–347. https://doi.
org/10.1134/S1607672918060157 [PubMed]

https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/j.cell.2020.02.052
https://www.ncbi.nlm.nih.gov/pubmed/32142651
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102627/
https://doi.org/10.1128/JVI.01815-18
https://doi.org/10.1128/JVI.01815-18
https://www.ncbi.nlm.nih.gov/pubmed/30626688
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401451/
https://doi.org/10.1126/science.1116480
https://doi.org/10.1126/science.1116480
https://www.ncbi.nlm.nih.gov/pubmed/16166518
https://doi.org/10.1038/nature02145
https://doi.org/10.1038/nature02145
https://www.ncbi.nlm.nih.gov/pubmed/14647384
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095016/
https://doi.org/10.1128/JVI.01542-10
https://doi.org/10.1128/JVI.01542-10
https://www.ncbi.nlm.nih.gov/pubmed/20926566
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004351/
https://doi.org/10.1128/JVI.02012-06
https://doi.org/10.1128/JVI.02012-06
https://www.ncbi.nlm.nih.gov/pubmed/17079315
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797474/
https://doi.org/10.1128/JVI.00737-08
https://doi.org/10.1128/JVI.00737-08
https://www.ncbi.nlm.nih.gov/pubmed/18495771
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493326/
https://doi.org/10.1128/JVI.02062-10
https://doi.org/10.1128/JVI.02062-10
https://www.ncbi.nlm.nih.gov/pubmed/21068237
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020023/
https://doi.org/10.1134/S1607672920010147
https://doi.org/10.1016/j.antiviral.2013.09.028
https://www.ncbi.nlm.nih.gov/pubmed/24121034
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889862/
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.1038/s41591-020-0868-6
https://doi.org/10.1002/path.1597
https://www.ncbi.nlm.nih.gov/pubmed/15221932
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167902/
https://doi.org/10.1128/JVI.01702-06
https://doi.org/10.1128/JVI.01702-06
https://www.ncbi.nlm.nih.gov/pubmed/17108019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797529/
https://doi.org/10.1002/1096-9896(2000)9999:9999%3C::AID-PATH743%3E3.0.CO;2-T
https://doi.org/10.1002/1096-9896(2000)9999:9999%3C::AID-PATH743%3E3.0.CO;2-T
https://www.ncbi.nlm.nih.gov/pubmed/11169526
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1016/j.cell.2020.02.058
https://www.ncbi.nlm.nih.gov/pubmed/32155444
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102599/
https://doi.org/10.1101/2020.03.14.988345
https://doi.org/10.1101/2020.03.14.988345
https://doi.org/10.1126/science.abb2762
https://doi.org/10.1126/science.abb2762
https://www.ncbi.nlm.nih.gov/pubmed/32132184
https://www.ncbi.nlm.nih.gov/pubmed/17974127
https://doi.org/10.1134/S1607672918060157
https://doi.org/10.1134/S1607672918060157
https://www.ncbi.nlm.nih.gov/pubmed/30607736


Research Results in Pharmacology 6(2): 1–7 7

Author contributions
 � Vladislav O. Soldatov, junior researcher of the Core Facility “Genome editing”, Institute of Gene Biology of the 

Russian Academy of Sciences; junior researcher of the Research Institute of Living Systems Pharmacology , Bel-
gorod State University, e-mail: pharmsoldatov@gmail.com; ORCID ID http://orcid.org/0000-0001-9706-0699. 
The author was engaged in literature analysis and paper writing.

 � Marina V. Kubekina, junior researcher of the Core Facility “Genome editing”, Institute of Gene Biology of the 
Russian Academy of Sciences, e-mail: kubekina@genebiology.ru; ORCID ID http://orcid.org/0000-0002-8834-
1111. The author was engaged in paper writing and preparing graphical materials.

 � Yuliya Yu. Silaeva, PhD in Biological Sciences, researcher of the Core Facility “Genome editing”, Institute of 
Gene Biology of the Russian Academy of Sciences, e-mail: silaeva@genebiology.ru; ORCID ID http://orcid.
org/0000-0003-2070-9001. The author was engaged in structuring the article and arranging references.

 � Alexandra V. Bruter, PhD in Biological Sciences, researcher of the Core Facility “Genome editing”, Institute 
of Gene Biology of the Russian Academy of Sciences, e-mail: aleabruter@gmail.com; ORCID ID http://orcid.
org/0000-0002-2090-2488. The author was engaged in developing the concept and literature analysis.

 � Alexey V. Deykin, PhD in Biological Sciences, Head of the Core Facility and senior researcher of the Center for 
Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of the Russian 
Academy of Sciences, leading researcher of the Laboratory of Pathogenomics and Transcriptomics, Institute of 
General Pathology and Pathophysiology. e-mail: aleabruter@gmail.com; ORCID ID http://orcid.org/0000-0001-
9960-0863. The author generated the idea of research and was engaged in developing the concept, analysing liter-
ature and writing the paper.

mailto:pharmsoldatov@gmail.com
http://orcid.org/0000-0001-9706-0699
file:///D:\��������\kubekina@genebiology.ru
http://orcid.org/0000-0002-8834-1111
http://orcid.org/0000-0002-8834-1111
mailto:silaeva@genebiology.ru
http://orcid.org/0000-0003-2070-9001
http://orcid.org/0000-0003-2070-9001
mailto:aleabruter@gmail.com
http://orcid.org/0000-0002-2090-2488
http://orcid.org/0000-0002-2090-2488
mailto:aleabruter@gmail.com
http://orcid.org/0000-0001-9960-0863
http://orcid.org/0000-0001-9960-0863

	On the way from SARS-CoV-sensitive mice to murine COVID-19 model
	Abstract
	Background
	Virus invasion pathway
	Homology between human and mouse ACE2 proteins
	Homology between human and mouse TMPRSS2 proteins
	Mouse models of SARS-CoV infection
	Novel approach to the creation of SARS-CoV-2-sensitive mice
	Discussion
	Acknowledgements
	Conflict of interest
	References
	Author contributions



